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1. Abstract

As intelligent systems have become more fully functional and
commonly available, questions about their capabilities and
relationship with humans have increased.  This paper builds on
the IS requirements ideas of Messina et al [2001] to explore
middle ground between anthropomorphic approaches like the
Turing test that rely on similarity to human behavior in an
"imitation games" and the narrowness of tests of chess mastery.
I contrast a system like Deep Blue which has a very fixed
environment in which it performs to more complex types such as
Associate technology.   Deep Blue, I argue, is an example of
system whose performance is expert, but whose competence is
fragile and it may not satisfy extended definitions of competence
and performance intelligence that we measure in dynamic
environments.  A clinical protocol system is used to explore the
basic functional capabilities and knowledge. Beyond symbol
processing and the knowledge level are grounded reactive
intelligent within more of an environmental/systems perspective.
I build on grounded systems to discuss the use of goals using,
learning-based systems and & multi-modal logics that
characterize “realistic” intelligent systems.  It is argued that such
characterizations will evolve as IS design matures into grounded
intelligence and situated, rational agent systems.  In the future
belief models and measures of rational coherence might be used,
as basic approaches to facilitate intelligent system performance
in dynamic environments.

Keywords: IS, Intelligent Systems, Turing Test, Cognitive
Model, situated cognition, BDI, Deep Blue, constructionism

1: Introduction
Investigation of artificial intelligence system capabilities
now has a long history with notable discussion stemming
from the original Turing test with many modern
elaborations. Motivating contests exist for passing a test
such as Turing's (Loebner Competition) as well as prizes
for tasks in chess and various robot competitions
(RoboCup, Office Navigation, Trash Pickup etc.).
However, something like a Turing Test, imitation of
human conversation, seems too difficult if we take it to
logical conclusions, while success in something like chess
as demonstrated by the triumph of Deep Blue seems too
narrow an achievement to feel that we have made general
progress on truly intelligent systems.  Since the
intersecting concepts of performance, intelligence and
systems are complex, success with Intelligent Systems
may be aided by focus on tasks of intermediate
challenges.  I will discuss several examples from the
medical realm to illustrate the challenge and the state of

affairs.  From the example of patient safety performance I
build a framework of intelligence perspectives or
dimensions to organize the discussion. It has some clear
idea of successful performance.  For diagnosis we can ask
if it is correct given ratings by an expert panel.  Several IS
diagnosis systems have been implemented and indeed, by
expert ratings, they perform better than a typical
physician, yet they have little penetration in the healthcare
industry.  Why?  One reason is that the measure of
correctness is isolated and doesn't look at the total picture
including cost and maintenance issues.  The system's
knowledge can be difficult to maintain and further
systems have difficulty fitting into the working
environment, an issue I discuss more under the topic of
Associate Systems.

Still another factor concerns the issue of patient safety
and system error.  There are 4 categories by which human
performance is judged in relation to patient safety [Marx,
2001].  These are:

1. Human/system error
2. Negligent conduct
3. Reckless conduct
4. Knowing violations

We can see that judging human skill quickly gets beyond
mere performance when assigning these categories1.
Human/system error is a judgement that the system’s
performance was “inadvertent” and other than intended.
We make such errors every day with minimal
consequences and so might systems. The 2nd category,
negligence, is a more culpable behavior and in healthcare
is generally assigned when an individual has been harmed
by a failure to exercise skill, care and learning expected of
a provider [Marx, 2001].  Thus, we quickly leave a purely
behavioral domain and enter one with concepts like
“learning’ skill and intentions. There are several distinct
architectural levels that can be distinguished meaningful
beyond the “what” of behavior that include why (a
knowledge and cognitive level), how (functional /symbol)
level and what descriptions. This leads to higher
dimensions for judging behavior outlined in the four
dimensions or views as shown in Table 1. At the

                                                          
1 For current implementations we could agree that ISes
aren’t going to make category 4 safety errors until we
have systems whose intentions are explicit!



foundational level of behavior we can discuss the most
obvious aspects of performance.  When we talk about a
system at this level the intent is not to go beyond the
dimension of its behavior.   But already there are many
issues here, such as emerged from earlier attempts at
“Behavioral Psychology”.  Our patient safety example
illustrates the problems in principle.  A second dimension,
shown in Table 1 is a functional approach that is typically
couched in a stimulus, information processing, and
response model.

Dimension/Perspective Characterization
1.  Behavioral/What Performance assumes not other

system/dimensional knowledge.
Such behavioral descriptions list the
 observable behavior exhibited by a
system when it is being applied or
executed. This model of system
 behavior (i.e., a series of episodes
of the system's activities) relies on
 observation.

2.  Symbolic/Functional
Architecture (How)

Traditional information processing of
symbols. The functional model
describes an (implemented)
representational and computational
 commitments/architectural primitives.

3.  Environmentally
Reactive (External why)

Intelligent behavior is a coherent
response to environmental challenge.
  To do this it may functionally
involve goals and world models. The
knowledge level description
describes a system in terms of the
 knowledge of the world and some
principles that are applied when
using that knowledge.

4.  Goal-oriented and
Intentional (Internal why)

Agent-orientation to rationalize
 intelligence at a belief/goal/ intention
 level. At this level we have refined
 principles of rationality.

Table 1  Perspectives of Intelligent Systems (What,
how and why)

Prior PERMIS conferences in 2000 and 2001 provide a
broad discussion on the testing of Intelligent System (IS)
based both on behavioral performance, including
efficiency and effectiveness measures drawing on the
expectations of designers, as well as functional
capabilities including robustness and learning capabilities
etc.  One way of pursing the question has been to take
performance measures of non-intelligent systems and to
attempt to add measures for intelligence [Messina et al
2001].  The simplest way to frame this has been to discuss
the main elements found in IS. Messina et al [2001]
propose several elements that make up a functionally
intelligent architecture including:

• behavior generation to deal with incomplete
commands (e.g. interpret commands, supplement
instructions),
• synthesize alternative behaviors and adjust plans;

• adjust sensory processing to deal with the unexpected
and unknown; and
• represent the world using an updatable, long-term
stores of knowledge, including commonsense notions.

 Such a listing fits the now classical Input, Process, Store
and Output information processing type of model of
intelligence such as shown in Figure 1.  In such robotic
models, perception and behavior are treated as separate,
front end functions and "cognition" which, goes on in the
processor and memory functions controls the perceptual
and effector functions. This is a popular concept of
intelligence as basically cognition [Newell, 1982]- the
capacity to construct and manipulate symbolic
representations, i.e. "approximate models" that are
mapped to the environment and determine "appropriate"
action. This is also called a knowledge-oriented view,
since a system's knowledge is a way to describe behavior
(e.g. synthesizing, adjust plans etc.). Chong and Berg-
Cross [1990] provide an example of such work to
understand the types of errors that ISes might make.
Although models differ widely in terms of how
sophisticated their concepts of knowledge, cognitive
process and learning are Messina et al [2001] provide a
useful base list several of functional requirements for
testing cognitive systems e.g.. tests to measure the ability
to fuse data from multiple sensors, including the
resolution of conflicts. One of the goals of this paper is to
follow up this approach by applying this criteria and
additional characteristics raised in higher levels (3 and 4)
discussed later or one advanced systems to illustrate
assessment.  A medical protocol planning system is used
later in the paper to illustrate this.

There are many alternative ways of distinguishing the
third distinction of intelligence. I call this Interactionist
following a view of intelligence that see it, like
knowledge, as open to interpretation  and always relative
to others things that provide an environment [Clancy
1989]. Steele [1995], for example, follows this view and
sees self sufficiency  in such interactions, which is called
agenthood, as the basis for intellect.  In this view we
judge behavior as intelligent to the extent that it sustains
an agent in an environment. Mail delivery robots are
intelligent if they can successfully interact with and
navigate a mail environment, especially if it is complex,
uncertain and changes often.  The key measurement is not
a specific behavior but is described in terms of the quality
of a result relative to this environment and what it
presupposes. That result can be categorized as "success"
in terms of a context.  This is the same level of analysis as
provided in the patient safety example previous discussed.
Hence calling a system intelligent or its behavior
intelligent, or in error,  is based on an external,
human/observe judgement as shown in Figure 1 [Van de



Velde 1995] rather than being a structural or even
functional part of a "system". This shift in view includes
the notion that knowledge is situational and cannot be
viewed as self contained.  Instead, it is inherently
coordinated with an environment as situated context.  If
we buy this interactionist view of intelligence we quickly
see the connection to a Turing Test (TT) which embeds
system intelligence in a human context [(Saygin et al.
2000].  The Turing test is behavioral and interactionist but
has a naive anthropomorphism implicit in a human
"imitation” games. “If one were offered a machine
purported to be intelligent, what would  be an appropriate
method of evaluating this claim?   The most obvious
approach might be to give the machine an IQ test .
However, good performance on tasks seen in IQ tests
would not be completely satisfactory because the machine
would have to be specially prepared for any specific task
that it was asked to perform.  The task could not be
described to the machine in a normal conversation (verbal
or written) if the specific nature of the task was not
already programmed into the machine.  Such
considerations led many people to believe that the ability
to communicate freely using some form of natural
language is both an essential attribute of an intelligent
entity and a confirming test of underlying  competence.

Figure 1 Model of Information/Symbol Processing

But philosophers like Searle with his Chinese Room
argument challenge the Turing Test and its natural
language exchange as a basis for assigning intelligence.
This group maintains that the judgement of cognitive
phenomena cannot be solely on the basis of observed
input-output behavior.  It is worth pointing out in passing

that many strong AI critics like the Interactionist view,
especially when it touches on the relative merits of
symbolic learning and connectionist learning for
implementing intelligence. Many find that Stevan
Harnad’s  [1990] hybrid model to grounding symbols in
the analog world with neural nets is a useful approach.
The issue of the behavioral problems of the naive Turing
test are taken up later in the paper in the context of Deep
Blue’s intelligent behavior.

Following Dennett's [1987] philosophical  formulation,
the fourth level explicitly considers  intentions and belief,
such as our patient safety .  In philosophy the so called
intentional stance position serves as a convenient, abstract
way of talking about intelligent systems, allowing us to
predict and explain their behavior without having to
understand or describe how the cognitive mechanism
actually works.  Cognitive theorists and modelers have
elaborated this in terms of cognitive structures that are
capable of performing cognitive processes which in turn
use those structures. Developers have to make many
architectural decisions to actually implement such a
philosophy. In the main this is the view a useful or
“realistic” agent whether it is to be realized as
"intelligent" software or as an autonomous robot. Such
practical agents range from information gathering and
trading agents to autonomous vehicles and may include
real time physical capabilities, good for dangerous
situations beyond the human central nervous system
capacity.

The remainder of the paper is as follows. Section 2 walks
through an example of an intelligent system applied to
clinical guidelines to illustrate both the  behavioral and
functional criterion of Messina et al [2001] as well as the
use of plans and goal reasoning in a system.   Section 3
discusses the intelligence of Deep Blue using  an
interactionist robotics and unified cognitive architecture
perspective.  Section 4 returns to the Turing test and
expands the concept to bridge to more useful concepts of
judgement of intelligence and in particular the models that
employ beliefs and intentions. Section 5 summarizes
major findings, proposed initiatives arising from this
view, dusts off the old concept of Associate Systems and
proposes motivational competitions to enliven the field.

2. Gauging the Performance of
Intelligent Clinical Protocol System

One of the most prolific areas of AI research has been in
the medical realm which provides more representative
measures of intelligence than chess performance and
where there already exist regular monitoring efforts to
judge success.  A survey of the entire field is well beyond
the scope of this paper, and even sub-areas, such as
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diagnosis are too diverse to cover easily.  Instead I look at
one well researched area - the support provided by
intelligent system for clinical protocols/guidelines and a
system that has been designed to aid people in developing
and using clinical protocols also call guidelines. Clinical
protocols have been developed over the last 12 years
provide a quality standard of care for such things as
diagnostic and therapeutic procedures, typically based on
the consensus of experts.  Protocols are increasingly in
widespread use and The American medical Association's
Directory of Practice Parameters listed over 1,500 several
years ago.   However, there is little sound data to judge
effectiveness across medical practice and intelligent
processing has been researched to automate, support and
improve guideline-oriented medical care [Musen et al
1996].   One reason for selecting a clinical protocol
system is that task analysis of the field has been
conducted [Sharhar et al 1998]. along with system
development such as by the Stanford Medical Informatics
work with EON [Musen et al 1996]. That work includes
support of tasks for:

• determining the applicability of a guideline for a
given patient,

• generating recommendations for therapeutic 
interventions and lab tests via a protocol

• tailoring the recommendation to the context of the 
current patient situation and stage of protocol 
execution,

• monitoring the application of the protocol guideline,
• assessing the effectiveness of the guideline.

I use the Messina et al [2001] list of requirements for
testing Intelligent systems along with the performance
evaluation properties (I would call functional capabilities)
for ISes in non-numerical domains list  and Musen et al
[1996] to illustrate several of EON's interesting features.
EON but is built from general, purpose software
components and has been applied to protocol-based care
in domains as diverse as oncology, hypertension, AIDS
and diabetes.

Requirement 1 & 13: "interpret high level, abstract, and
vague commands and convert them into a series of
actionable plans" and " to understand generic concepts
about the world that are relevant to its functioning and
ability to apply them to specific situations".

EON's main task is a general one, generate an acceptable
plan given the current clinical situation and relevant
guidelines. It must determine a patient's eligibility and
refines abstract plans to fit the situation. A relevant
property  is its ability to deal with general and abstract
Information.  EON's designers recognized that it needs to
be a general problems solver like a physician .  Thus it

deals with both detailed, patient data in the medical record
and database and abstract protocol specifications.  It
infers higher-level, interval-based concepts using time-
stamped, patient data.  Conceptual abstractions are a
major feature of the EON approach and the PROTÉGÉ II
system is used to build the EON KBs emphasizing the use
of conceptual abstractions to define problem-solving
behaviors independently from the programming logic.

Also relevant is the ability to  "deduce particular cases
from general ones".  EON contains time abstraction,
general medical ontology (e.g. concepts and relations
between prescription, drug regime, medication, clinical
trial etc.)  as well as disease and patient specific
knowledge/information.  It uses an episodic skeletal plan
refinement method on very general time concepts to
instantiate a patient guideline plan.  An illustration of this
is shown in Figure 2. This deduces particular plans from
abstract information in combination with very specific
information.

Figure 2  EON Skeletal Plan and Refinement Process

Requirement  2, 3 , 15 & 14:  "to autonomously make
decisions as it is carrying out its plans" and to "re-plan
while executing its plans and adapt to changes in the
situation" and " work with incomplete and imperfect
knowledge by extrapolating, interpolating, or other means
" and " deal with and model symbolic and situational
concepts as well as geometry and attributes".

While EON is not an independent agent it's processing
includes setting sub-goals as part of its plan refinement.
An observer would see it going far beyond the original
specification in several steps:

1. Identify and propose a starting standard, 
abstract hierarchical  plan



2. Instantiate the plan based on situation and 
decomposition and to allow execution (time 
constraints etc.)

3. Identify problems that might make application 
of this plan (practical drug admin challenges, 
side effects, etc.)

A property of the system is the ability to reschedule and
replan and adjust the plan to updated situations [Messina
et al 2001].  It also might be said to "recognize the
unexpected" in that the guidelines project out a path and it
will replan if deviations occur such as reduce AZT if
anemia develops or side effects develop.  Similarly it
deals with incomplete information routinely.  It typically
does not have the entire attribute value set to begin with
and generates queries of relational DBs that are processed
into patient history.  EON deals with situations of time,
but distance and geometry, such as robotic path concerns
are not part of its knowledge base (KB).

Requirement  4-9:  to  "register sensed information with
its location in the world and with a priori data " and " fuse
data from multiple sensors, including resolution of
conflicts " and " to handle imperfect data from sensors,
sensor failure or sensor inadequacy for certain
circumstances" and " to direct its sensors and processing
algorithms at finding and identifying specific items or
items within a particular class" and   to "focus resources
where appropriate" and " to handle a wide variation in
surroundings or objects with which it interacts" .

EON does none of this.  It is not robotic.  An IS is often
robotic in having sensor and/or effectors but many are
decision supports.  Adding a robotic element to an IS is
discussed later in the context of interactions and a Total
Turing Test.

Requirement  10-12: to "deal with a dynamic
environment" and "map the environment so that it can
perform its job" and " update its models of the world, both
for short-term and potentially long-term".

As noted EON deals with changes in the patient situation
as well as changes to guidelines and phase of care.
However, it's function does not result in model-mapping
of the situation as might be  implied here.  Machine
learning approaches which do this routinely such as
embodied in the SOAR architecture are discussed later in
the paper.

Requirement  15: " to predict events in the future or
estimate future status".
EON does provide projections to allow comparison such
as for the T-Helper implementation of Eon for AIDS -

what is the situation 172 hours after symptomatic
treatment.

Requirement  16: "ability to evaluate its own performance
and improve".
EON does not have such ability.

3.  Deep Blue's Brand of Intelligence and
Grounding in the  Interactionist
Perspective

Chess was long seen as an extreme test of human
intelligence and an excellent domain for IS [Levinson,
1991]. Chess performance is easy to monitor because
success and skill categories are well defined.  Studies of
experts have been conducted to construct cognitive
models which have been more broadly applied
(uncertainty management and problem space pruning for
example). However, as long as a dozen years ago
computer success at chess was largely based on brute
force computation using alpha-beta minimax search with
selective extensions IS [Levinson, 1991], rather than
elegant knowledge structures or complex processing
strategies - the intelligent parts of a cognitive model. This
was necessary to achieve effective time performance -
conventional AI techniques were too slow for real-time
response and chess is very much a time bound game.  In
the late 90s Deep Blue achieved its victory and it's
processing capabilities are well known but the victory
raises some interesting issues.   Foremost is, do we
consider Deep Blue intelligent?  Behaviorally the answer
has to be yes. If we take strictly behavioral views of
intelligence in chess we may list the behavioral pattern
without making any claim of an agent's cognitive level.
Also by a judgement of interacting with its environment it
is successful. By performance measures Deep Blue is
intelligent, but this seems unsatisfactory on several other
levels. It is grounded in the main chess objects and how
they behave, but this is trivial, a game of simple rules.
Deep Blue doesn’t match up against the Messina et al
[2001] criteria.  It has minimal sensing capabilities, no
commonsense knowledge to speak of, no ability to fill in
knowledge. An interesting sidelight is that the IBM team
found that while chess suggestions from experts were
useful, they could not always be relied upon to aid Deep
Blue's evaluation function - the essential process.  What
the team wound up doing is to create a "knowledge-free"
machine using just available on-line chess databases to
give the system a statistical experience base.  That is, the
final knowledge base had learned via working through a
lifetime of chess games - essentially an grounding in
chess reality, leading to its expertise, but the resulting
knowledge base lacks the more abstract knowledge such
as is often assumed underlies intelligence.



Now it is true that we typically are not talking about ISes
with the full range of human ability, but in many cases we
are talking about sensori-motor capacity and the ability to
distinguish things in the world. Broader world knowledge
is more typically learned by robots as  summarized by
Harnad [1993]in his discussion of a revised test of
intelligence he calls the Total Turing Test (TTT):

Well, in the case of the Turing Test (TT), there
was more we could ask for empirically, for
human behavioral capacity includes a lot more
than just pen-pal (symbolic) interactions. There
is all of our sensori-motor capacity to
discriminate, recognize, identify, manipulate
and describe the objects, events and states of
affairs in the world we live in (the same objects,
events and states of affairs, by the way, that our
thoughts happen to be about). Let us call this
further behavioral capacity our robotic capacity.
Passing the TTT would then require
indistinguishability in both symbolic and
robotic capacity.

We can see this direction as also having been taken by
real-time robots to handle problems such as:

• Symbol grounding to the real world (easy in chess,
but not elsewhere)

• RT signal interpretation and planning under time
constraints

• Situatedness issues - how is behavior adjusted to
dynamic situations?

Subsumption architectures have been one attempt around
these. [Brooks 1986]  The main assumptions behind these
attempts include:

• No attempt to construct an full, central symbolic
model of the environment

• Behaviors are not controlled by a central executive
looking at master plan, but may have a network of
behaviors that may excite or inhibit each other.

• Sensor interpretation, planning and execution are
not separated.  Rather they are organized around
modular competencies.

• Complex behavior is not programmed in but
emerges from dynamic interactions between the
environment and the component behaviors.

As Harnad [1993] says,

Real transduction is in fact essential to TTT
capacity. A computational simulation of
transduction cannot get from real objects to
either robotic performance or symbolic

performance (not to mention that motor
interaction with real objects also requires the
output counterparts of transducers: effectors).
This is the requisite nonarbitrary argument for
the special status of transduction that we did not
have in the case of parallelism (or silicon). In
addition, there are other things to recommend
transduction as an essential component in
implementing cognition. First, most of the real
brain is either doing sensory transduction or
analog extensions of it: As one moves in from
the sensory surfaces to their multiple analogs
deeper and deeper in the brain, one eventually
reaches the motor analogs, until finally one finds
oneself out at the motor periphery. If one
removed all this sensorimotor equipment, very
little of the brain would be left, and certainly not
some homuncular computational core-in-a-vat
that all this transduction was input to. No, to a
great extent we are our sensorimotor transducers
and their activities, rather than being their
ghostly computational executives.

There are now examples of unified robotic systems that
include a commitment to symbolic manipulation as well
as sensory transduction and organized motor responses
which might satisfy the TTT, should we want to engage in
it. One classic one is ICARUS [Langley et all 1991],
which is made up of  the standard 3 major components.
However, architecturally the sensory buffer proves input
to a mapper to the conceptual level, there is a reactive
action planner to identify appropriate actions for world
situations and there is a mapper of the action to an action
"scheme" that drives the effectors that connect to the
motor buffer.
The innovation here is that all 3 components use a similar
representation (hierarchical probabilistic concepts) and
reasoning is driven by a set of heuristics on the
classifications in the hierarchy.  Thus we have an index of
world objects from perception, plans and more schemes
each of which is defined by attribute-value pairs with a
conditional probability of an attribute having a particular
value given membership in a particular class.  As noted
by  van de Velde [1995] by having consistent
representation we get natural integration between
perception, planning and action.  Learning in inherent in
the architecture since an instance  is sorted down a
hierarchy by class selection2.  When a class is selected the
probability distribution of attributes is updated using
Classit's incremental function [Gennari et al 1989] or a

                                                          
2 One might use other approaches like Grossberg's
adaptive resonance theory (ART) to organize clusters as
a variety of levels and use the vigilance parameter to
adjust the degree of clustering.



new class is created.  This integration provides a natural
symbol/concept grounding, which is not built in by a
knowledge engineer.  There need not be world view,
rather, like reactive robots success is built through
interacting with the world.  It goes two steps better than
reactive robots in that it creates:

1. manipuable concepts for planning as it
goes along.

2. builds coordinated/coupled processes
that are closed as well as defined  by
their organization and the action
dynamics these processes imply.

This is also fundamentally different from the traditional
I-P-O architecture and the separation between perception
and action is largely gone.   Both are reactions to
environmental changes and employ a planning cognition
to preserve or reach some state.  Thus, with such an
architecture I could speak of a motor performance with
plans and percepts underlying it as an integrated thing.
More importantly, I might expect the IS to be able to
justify its actions by means of a trace of the activated
concepts and attribute values.  It is a step, but not
necessarily as large a step, as we have with Deep Blue to
imagine a robust performance over a range of domains.

4.  Goal- Oriented Agent Intelligence
with Beliefs, Desires and Intentions

In our final dimension I take a large step towards an
intelligent performance that might meet some of the
judgmental characteristics involved in patient safety.   As
previously noted categories of patient safety involve a
judgement of the intentionality to do wrong.  Like the
Turing test it implicitly rests on human ability to predict
and understand the behavior of “others” in complex
interactions. This may lead to misjudging the intelligence
of a system. As Hayes and Ford [1995] argue, the Turing
Test is fundamentally flawed for two reasons: it is a
basically poor experimental design, and it tests for the
wrong thing. It is the wrong design because while it
seems "unashamedly behavioristic and operationalistic",
yet it is based on hidden assumptions rising from on our
naïve psychology. Similarity to human behavior is just
not a sensible criterion for intelligence. Our social
experience provides an implicit, observer bias to assign
mentality and intentions to the system in a test and many
would argue that typical human use reasoning techniques
haven't found their way into typical intelligent systems.
E.g., humans use extremely complicated, temporally
extended mental images and associated planned intentions
to reason.    It is the goal of the final dimension to build in
such capabilities so that such judgements of IS could be
justified.

In the prior section we briefly discussed goals within the
ICARUS architecture, but the dynamics of these was not
detailed.  There is a large body of work to actively
incorporate such planning about goals and belief  abilities
into ISes/intelligent agent architecture as more than
reactive systems.  ICARUS fits into this class of
"cognitive architectures" as does SOAR [Newell, 1990].
SOAR, like ICARUS  is interactionist in the sense that the
task environment determines the possible structure of
problem spaces.  It is goal oriented in that problem
solving is built around control knowledge that selects
goals and sub-goals as it searches a problem state.  To
understand its behavior we have to look at its functional
architecture and ontological commitments to knowledge
and goals.  Globally problem solving involves search,
which is controlled by a context tree which might consist
of a 4-tuple of: goal, problem space, state and operator.
At any instant we may loosely say that this 4-tuple object
is what such an IS actively "knows".  The cognitive
decision cycle (shown in Figure 3) consists of two phases
to manages the context tree by determining what slot
attributes should be changes.  In the elaboration phase
long-term knowledge is represented by production rules
fire and those that fit the situational pattern fire in parallel
until now more changes in the 4-tuple object occur.  In
this process new "preferences"3 for a part of the 4-tuple
context object may arise.  In the second phase preferences
are evaluated via a decision procedure.  The result is a
new contextual object better than any others.  If such an
object fails based on preferences one of fours types
impasse is reached - tie. No-change, reject impasse or
conflict impasse.  All impasses are solved by the same
goal- search process used in the cycle.  Thus the system
has a unified approach to problem solving around goal --
based learning that uses environmental results expressed
in the problem statement and state as a factor.

SOAR is a pioneering effort which continues, but beside
being goal driven we may also introspect about intents.
Having a system aware of its performance was listed as an
IS feature by Messina et al [2001].  SOAR has a step in
that  direction, but we wouldn't be comfortable speaking
of its intention to "monitor itself”.   Such intentions built
into a system might satisfy professional guidelines for
patient safety.

Intentions have been added to agent architectures based
on Bratman's [1987] theory of human, rational behavior,

                                                          
3 Preference types are fixed simply at elements such as
feasibility, exclusivity, desirability, necessity   ( require,
prohibit ), termination for desirability of alternative
objects occupying slots in the context tree.



which formalized the ideas of Belief, Desire and Intention
(BDI).  BDI logics,  such as developed by Rao and
Georgeff [1998] , are multi-model symbolic logic4  used
in implementations to make agents more “realistic.

Figure 3.  SOAR decision cycle

Realistic reasoning separates deciding what to do for, how
to do it (planning), something like was the case in
classical information processing systems but with a higher
type of reasoning added.  Both deciding and planning can
be computationally expensive and an agent needs a
strategy on when and how to drop an intentional
commitment (its not possible or not feasible etc.).
Because of this, implementations, while realistic are not
typically practical.  I take up a proposal to make these
both practical and realistic in my final section.  Modal
style logics have been most widely explored for styles of
intentional inference such as reasoning about time and
belief. Agent propositional “event” knowledge is
qualified as a temporal truth AKA belief, so deduction
can both exploit features implicit in such qualification
along with the context of the proposition. To say in the
past, something true in the past is still today true in the
past, asserts a global property implicit in the interpretation
of the modality past. An analogous property of belief is
positive introspection: if we believe something, we
believe we believe it. So each modality implicitly carries
a particular sort of inference and the use of different
modalities allows the applied logician to make
distinctions on the sort of inference. The benefit is
                                                          
4   A standard of classical truth functional propositional
and first order predicate logic.

economical notation, akin to natural language in the way
detail is encapsulated in context, but at the cost of the
functional transparency of extensional mathematics.
Before closing it is worth noting that BDI
implementations are typically more interested in
autonomous agents, rather than developing AI systems for
specialized purposes such as a particular medical
application.  Can these be brought together in a  tractable
way?

5.  Summary and Directions towards
Practical & Realistic Intelligence

Having reached the BDI level with deliberative and
planning competence, let's discuss some of the possible
directions for making ISes successful and measuring their
performance. As we saw with the definitions of patient
safety and in the naïve Turing Test our judgments involve
concepts like  intent which are not typically designed in a
functional architecture.  However as ISes become
increasingly advanced, we can imagine drivers to systems
with all the Messina requirements s well as an additional
set to improve human –IS cooperation.   Such cooperation
and working relationships were envisioned by DARPA's
AssociateTechnology program of the late 80s and early 90
[Berg-Cross 1991] in order to help:

• Handle increased amount of detail
(bookkeeping)

• Remove bias
• Broaden the experience base by combining

knowledge
• Provide easier visualization and
• Unify joint action

 In an associative relationship human and IS share goals
and tasks and communications. Interactions are structured
/designed to work in mutually cooperating ways.  The
quality of IS decision and control depends greatly on the
quality of information generation on its interfaces. In such
interfaces we have the problems of situational awareness
and situated cognition.   A healthcare provider working
with a traditional medical application is only modestly
supported in adapting to changing demands and contexts.
Working with an Associate IS makes it simpler in a way,
but like any introduction of a new agent we have the
problem of coordination - perception about patient status
and  treatment effect, clinical path, relevant medical
procedures. Successful associate coordination would
involve at  least 3 things besides the raw information

1. Abstract knowledge
2. Situated dialog
3. BDI based dialog



As we saw in SOAR and EON an approach to the
coordination problem is to combine abstraction with state
space representation of tasks. Abstraction, rather than
exhaustive reduction, deals with complexity by searching
for global relational properties that exist somewhat
independently of the knowledge elements whose behavior
they govern.  The models of abstraction need to be
coordinated.  Strong knowledge engineering  and
ontology tools, for situational knowledge specification are
needed for this along with suitable browsers/query tools
and  displays.

Flexible and intelligent dialog is also needed.  It must be
situated to support coordination.  Also as noted by McRoy
et al [1999] part of the problem is that right now human-
human communication is different than human IS.
Systems provide large amounts of information and have
difficulty handling feedback about it.  They are not
focused to human style communication, which makes
coordination difficult and limits the trust of ISes.  In the
same way that some anthropomorphic judgements are
projected on systems, so biases against their capabilities
also may exist.  Human interaction tends to be more
incremental and feedback is interpreted in terms of beliefs
and goals.  For most interaction it is very important to
know that beliefs, goals and intentions are shared and that
beliefs about the dialog can be made explicit.5

I have used alternative views of the Turing test and Deep
Blue's performance with four dimensions of intelligence
to illustrate the difficulty of gauging success.  My
speculation is that we are far enough from success on any
one dimension from achieving the type of success needed
to master patient safety problems such as inherent in
medical protocols.  Obtaining a systematic view of system
intelligence in complex, dynamic environments has rarely
been a high-priority objective because obtaining realistic
reasoning is computatuionally expensive.  I think however
it is time to consider some challenges (grand and
otherwise) for ISes.  Such challenges that fall between TT
and chess.  They could be small but interesting such as the
annual robot building competition  sponsored by AAAI or
the self-replication contest held during the ICES98
conference. The object of this was to demonstrate a self-
replicating machine, implemented in some physical
medium, e.g., mechanical, chemical, electronic, etc.
 Larger efforts might be organized around work to
integrate levels such as shown in Figure 4.  Essentially
there is a bottom up area taking the idea that intelligence
is a coherent, grounded response to environmental

                                                          
5 Vicente and Jens Rasmussen [1990] pursue a related
idea of ecological interface which includes a degree of
abstract and BDI.

challenge.  What has been missing here is adequate
understanding of the tasks implied in the environmental
complexity going from the more predictable in chess to
the more dynamic.  Setting up a suitable lab and test
environment would be a good area for NIST leadership.

Figure 4.  Environmental task modeling and
Rationalizing Research: Areas of Integration

At the top level we have rationalizing research to have
challenges in certain areas.  The goal of this level of work
is to be able to support the level of professional and legal
responsibility such as we saw implied in  patient safety.
Henry Hexmoor and Gordon Beavers [2002] consider
such needs from an agent perspective and propose to
extended the intentional notions of Belief, Desire, and
Intention (BDI ) to include social “properties” of Value6,

                                                          
6 Values are understood as principles that govern the
agent’s behavior and which the agent will attempt to
uphold as end-goals
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Obligation, and Norm (VON)7. These 3 provide a level),
of predictability, accountability, and responsibility to an
IS’s  high-level goal behavior (Figure 5)  which allow us
to talk of an associate system.

Figure 5 Intra-agent concepts
[Hexmore and Beavers, 2002]

“Our legal system holds the owners of software
agents responsible for the actions of those
agents, therefore, agents capable of considering
their responsibilities could offer some protection
to the owner of the agent.  Such software agents
might be agents involved in electronic
commerce, automated teller machines, proxy
email agents, or robot assistants. Likewise in a
command and control situation, a commander is
responsible for the actions of the agents under
his/her control and therefore would have greater
confidence in responsible agents capable of
considering the repercussions of their actions.”
Henry Hexmoor and Gordon Beavers [2002]

Additional efforts would be needed to standardize the
abstract knowledge in ontologies necessary to achieve
generality.  The standard upper ontology (SUO) is one
effort that might provide a start, but it should be tested by
application to a several domains such as healthcare.  My
speculation is that  situated BDI dialog will be needed to
achieve higher reliability, verifiability, and precision of
expression to support reasoning about other agents and

                                                          
7 Norms yield default behaviors that the agent is
expected to observe whenever the agent finds itself in a
situation to which the norm applies [Henry Hexmoor and
Gordon Beavers , 2002]

extensive human-agent interaction.  Given a few rounds
of such work, it might be time to consider a true Turing
test.
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